4.6 Article

A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 105, 期 D3, 页码 3955-3973

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/1999JD900932

关键词

-

向作者/读者索取更多资源

We describe a new parameterization of polar stratospheric clouds (PSCs) which was written for and incorporated into the three-dimensional (3-D) chemistry and transport model (CTM) developed for NASA's Atmospheric Effects of Aviation Project (AEAP) by the Global Modeling Initiative (GMI). The parameterization was designed to respond to changes in NOy and H2O produced by high-speed civilian transport (HSCT) emissions. The parameterization predicts surface area densities (SADs) of both Type 1 and Type 2 PSCs for use in heterogeneous chemistry calculations. Type 1 PSCs are assumed to have a supercooled ternary sulfate (STS) composition, and Type 2 PSCs are treated as water ice with a coexisting nitric acid trihydrate (NAT) phase. Sedimentation is treated by assuming that the PSC particles obey lognormal size distributions, resulting in a realistic mass flux of condensed phase H2O and HNO3, We examine a simulation of the Southern Hemisphere high-latitude lower stratosphere winter and spring seasons driven by temperature and wind fields from a modified version of the National Center for Atmospheric Research (NCAR) Middle Atmosphere Community Climate Model Version 2 (MACCM2). Predicted PSC SADs and median radii for both Type 1 and Type 2 PSCs are consistent with observations, Gas phase HNO3 and H2O concentrations in the high-latitude lower stratosphere qualitatively agree with Cryogenic Limb Array Etalon Spectrometer (CLAES) HNO3 and Microwave Limb Sounder (MLS) H2O observations. The residual denitrification and dehydration of the model polar vortex after polar winter compares well with atmospheric trace molecule spectroscopy (ATMOS) observations taken during November 1994. When the NO, and H2O emissions of a standard 500-aircraft HSCT fleet with a NOx emission index of 5 are added, NOx and H2O concentrations in the Southern Hemisphere polar vortex before winter increase by up to 3%. This results in earlier onset of PSC formation, denitrification, and dehydration. Active Cry increases and produces small (similar to 1%) decreases in lower stratospheric vortex O-3 concentrations during the spring relative to the HSCT-free run.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据