4.7 Article

Metallicity effects in non-LTE model atmospheres of Type Ia supernovae

期刊

ASTROPHYSICAL JOURNAL
卷 530, 期 2, 页码 966-976

出版社

IOP PUBLISHING LTD
DOI: 10.1086/308400

关键词

line : formation; nuclear reactions, nucleosynthesis, abundances radiative transfer; stars : atmospheres; supernovae : general

向作者/读者索取更多资源

We have calculated a grid of photospheric phase atmospheres of Type Ia supernovae (SNe Ia) with metallicities from 10 times to 1/30 the solar metallicity in the C+O layer of the deflagration model, W7. We have modeled the spectra using the multipurpose non-LTE model atmosphere and spectrum synthesis code PHOENIX. We show models for the epochs 7, 10, 15, 20, and 35 days after explosion. When compared to observed spectra obtained at the approximately corresponding epochs, these synthetic spectra fit reasonably well. The spectra show variation in the overall level of the UV continuum with lower fluxes for models with higher metallicity in the unburned C+O layer. This is consistent with the classical surface cooling and line-blocking effect due to metals in the outer layers of C+O. The UV features also move consistently to the blue with higher metallicity, demonstrating that they are forming at shallower and faster layers in the atmosphere. The potentially most useful effect is the blueward movement of the Si II feature at 6150 Angstrom with increasing C+O layer metallicity. We also demonstrate the more complex effects of metallicity variations by modifying the Fe-54 content of the incomplete burning zone in W7 at maximum light. We briefly address some shortcomings of the W7 model when compared to observations. Finally, we identify that the split in the Ca H+K feature produced in W7 and observed in some SNe Ia is due to a blending effect of Ca II and Si II and does not necessarily represent a complex abundance or ionization effect in Ca II.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据