4.4 Article Proceedings Paper

Stability of Cu(In,Ga)Se2 solar cells:: a thermodynamic approach

期刊

THIN SOLID FILMS
卷 361, 期 -, 页码 338-345

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0040-6090(99)00856-1

关键词

CuInSe2; Cu(In,Ga)Se-2; solar cells; stability; thermochemistry

向作者/读者索取更多资源

Cu(In,Ga)Se-2 (CIGS) based photovoltaic cells have demonstrated the highest solar energy conversion efficiencies ever for thin film devices. They also exhibit excellent stability in field tests and exceptional radiation hardness. The apparent paradox is that these results are obtained with a cell that contains a material that is chemically the most complex of the materials used in the various thin film solar cells. Moreover, the device itself contains many elements, compounds and interfaces, all potential focus for evolution or reaction. Because of their central importance, the basic scientific foundations for the remarkable lifetime and stability of those devices are discussed, especially but not exclusively from a chemical point of view. A first section is devoted to the assessment of the intrinsic thermodynamic stability of CIGS by a critical evaluation of available data. Its relationship with the formation energy of point defects is stressed. The chemical stability of the device interfaces are examined, including prospective buffer and window layers. (C) 2000 Elsevier Science S.A. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据