4.6 Article

A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary geophysical data

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 105, 期 D4, 页码 5049-5058

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/1999JD900302

关键词

-

向作者/读者索取更多资源

This paper presents a method for generating surface ultraviolet (UV) radiation maps over Europe, with a spatial resolution of 0.05 degrees, and potentially on a half-hour basis. The UV irradiance is obtained by interpolation in a look-up table (LUT), the entries of which are solar zenith angle, total column ozone amount, cloud liquid water thickness, near-surface horizontal visibility, surface elevation, and UV albedo. Both satellite (Meteosat, GOME) and nonsatellite (synoptic observations, meteorological model results, digital elevation model) data are exploited to assign values to the influencing factors. With the help of another LUT simulating the visible signal. Meteosat data are processed to retrieve the cloud liquid water thickness. The radiative transfer calculations are performed with the UVspec code. A preliminary step consists in generating an effective surface Meteosat albedo map from a series of 10 consecutive days. In this process the well-known difficulty of distinguishing clouds from snow-covered surfaces is encountered. An attempt is made to partially resolve the ambiguity by using the Meteosat infrared channel and modeled snow cover data. After additional empirical cloud filtering, the effective albedo map is used as a baseline to estimate the cloud liquid water thickness. The UV surface albedo is assigned uniform values for land and sea/ocean, except in the presence of snow. In this case it is given a value proportional to the Meteosat effective albedo. The total column ozone is extracted from the level 3 GOME products. The aerosol optical thickness is mapped by gridding the daily measurements performed by similar to 1000 ground stations. The digital elevation model is the GTOPO30 data set from the U.S. Geological Survey. European wide UV dose rate maps are presented for one day in April 1997, and the influence of the various factors is illustrated. A daily integrated dose map was also generated using 27 Meteosat acquisitions at half-hour intervals on the same day. The dose map produced in this way takes into account the evolution of the cloud field and is thought to be more accurate than if it were estimated from one data take, in particular at the relatively high spatial resolution of the product. Finally, a preliminary comparison of modeled dose rate and daily dose with measurements performed with a ground instrument is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据