4.5 Article

Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons

期刊

BRAIN RESEARCH
卷 857, 期 1-2, 页码 71-77

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(99)02364-1

关键词

ERK; glutamate; excitotoxicity; apoptotic-like death; cultured cortical neuron; rat

向作者/读者索取更多资源

Glutamate-induced excitotoxicity, with certain characteristics of apoptosis, has been implicated in a variety of neuronal degenerative disorders. In some physiological cases, extracellular signal-regulated kinases (ERK1/2) are activated by stimulation of glutamate receptors. In the present study, the activation (diphosphorylation) and role of ERK1/2 in glutamate-induced apoptotic-like death in cultured cortical neurons were investigated. Protein levels and activation (diphosphorylation) levels of ERK1/2 were examined by Western immunoblot, probed with anti-ERK1/2 and anti-active (diphosphorylated) ERK1/2 antibodies, respectively. Apoptotic-like death was determined by DAPI staining. Before a remarkable increase of apoptotic-like cell death was observed at 9-18 h after 15 min exposure to 50 mu M glutamate, diphosphorylation levels of ERK1/2 were rapidly increased, peaked at 5-15 min of the exposure, and reverted to sham control level 3 h after the exposure, while the protein levels of ERK1/2 were unaffected. The glutamate concentration effective for inducing apoptotic-like cell death was correlated with that for inducing ERK1/2 diphosphorylation. Both ERK1/2 diphosphorylation and the apoptotic-like cell death were largely prevented by MK-801, a specific NMDA receptor (a subtype receptor of glutamate) antagonist, or the elimination of extracellular Ca2+ with EGTA. PD98059, a specific inhibitor of ERK1/2 kinase, completely inhibited ERK1/2 diphosphorylation and partially inhibited the apoptotic-like cell death. These results suggest that largely via NMDA receptor-mediated influx of extracellular Ca2+, ERK1/2 were rapidly and transiently activated and were involved in glutamate-induced apoptotic-like death in cultured rat cortical neurons. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据