4.7 Review

Anharmonic force field, vibrational energies, and barrier to inversion of SiH3-

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 112, 期 9, 页码 4053-4063

出版社

AMER INST PHYSICS
DOI: 10.1063/1.481596

关键词

-

向作者/读者索取更多资源

The full quartic force field of the ground electronic state of the silyl anion (SiH3-) has been determined at the CCSD(T)-R12 level employing a [Si/H]=[16s11p6d5f/7s5p4d] basis set. The vibrational energy levels, using the quartic force field as a representation of the potential energy hypersurface around equilibrium, have been determined by vibrational perturbation theory carried out to second, fourth, and sixth order. The undetected vibrational fundamental for the umbrella mode, nu(2), is predicted to be 844 cm(-1). High-quality ab initio quantum chemical methods, including higher-order coupled cluster (CC) and many-body perturbation (MP) theory with basis sets ranging from [Si/H] [5s4p2d/3s2p] to [8s7p6d5f4g3h/7s6p5d4f3g] have been employed to obtain the best possible value for the inversion barrier of the silyl anion. The rarely quantified effects of one- and two-particle relativistic terms, core correlation, and the diagonal Born-Oppenheimer correction (DBOC) have been included in the determination of the barrier for this model system. The final electronic (vibrationless) extrapolated barrier height of this study is 8351 +/- 100 cm(-1). (C) 2000 American Institute of Physics. [S0021-9606(00)30308-7].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据