4.6 Article

RNA and DNA hydrolysis are catalyzed by the influenza virus endonuclease

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 9, 页码 6181-6188

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.9.6181

关键词

-

向作者/读者索取更多资源

The influenza virus polymerase complex contains a metal ion-dependent endonuclease activity, which generates short capped RNA primer molecules from capped RNA precursors. Previous studies have provided evidence for a two-metal ion mechanism of RNA cleavage, and the data are consistent with a direct interaction of a divalent metal ion with the catalytic water molecule. To refine the model of this active site, we have generated a series of DNA, RNA, and DNA RNA chimeric molecules to study the role of the 2'-hydroxy groups on nucleic acid substrates of the endonuclease, We could observe specific cleavage of nucleic acid substrates devoid of any 2'-hydroxy groups if they contained a cap structure (m7GpppG) at the 5'-end. The capped DNA endonuclease products were functional as primers for transcription initiation by the influenza virus polymerase, The apparent cleavage rates were about 5 times lower with capped DNA substrates as compared with capped RNA substrates. Cleavage rates with DNA substrates could be increased to RNA levels by substituting the deoxyribosyl moieties immediately 5' and 3' of the cleavage site with ribosyl moieties. Similarly, cleavage rates of RNA substrates could be lowered to DNA levels by exchanging the same two ribosyl groups with deoxyribosyl groups at the cleavage site. These results demonstrate that the 2'-hydroy groups are not essential for binding and cleavage of nucleic acids by the influenza virus endonuclease, but small differences of the nucleic acid conformation in the endonuclease active site can influence the overall rate of hydrolysis, The observed relative cleavage rates with DNA and RNA substrates argue against a direct interaction of a catalytic metal ion with a 2'-hydroxy group in the endonuclease active site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据