4.8 Article

Contact dynamics during keratocyte motility

期刊

CURRENT BIOLOGY
卷 10, 期 5, 页码 253-260

出版社

CURRENT BIOLOGY LTD
DOI: 10.1016/S0960-9822(00)00357-2

关键词

-

向作者/读者索取更多资源

Background: Keratocytes are specialised, rapidly moving cells that generate substantial contractile force perpendicular to their direction of locomotion. Potential roles for contractile force in cell motility include cell-body transport, regulation of adhesion, and retraction of the cell's trailing edge. Results: To investigate contact dynamics, we used simultaneous confocal fluorescence and interference reflection microscopy to image keratocytes injected with fluorescent vinculin. We found that contacts formed behind the leading edge and grew beneath both the lamellipodium and the cell body. Contacts in the middle of the cell remained stationary relative to the substrate and began to disassemble as the cell body passed over them. In contrast, contacts in the lobes of the cell grew continuously and more rapidly. incorporated more vinculin, and slid inwards towards the sides of the cell body. Contact sliding often led to merging of contacts before their removal from the substrate. Conclusions: We suggest a synthesis of two existing, apparently conflicting models for keratocyte motility, in which network contraction progressively reorients actin filaments using the contacts as pivots, forming bundles that then generate lateral tension by a sliding-filament mechanism. Contact dynamics vary between the middle of the cell and the lobes. We propose that laterally opposed contractile forces first enhance contact growth and stability, but escalating force eventually pulls contacts from the substrate at the back of the cell, without interfering with the cell's forward progress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据