4.5 Article

A computational model coupling mechanics and electrophysiology in spinal cord injury

期刊

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
卷 13, 期 4, 页码 883-896

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-013-0543-7

关键词

Computational model; Axon; Electrophysiology; Mechanics; Spinal cord injury

资金

  1. European Research Council under the European Union [306587]
  2. Spanish Ministry of Science [TIN2010-21289-C02-02]
  3. Cajal Blue Brain Project, the Spanish partner of the Blue Brain Project
  4. European Research Council (ERC) [306587] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据