4.7 Article

Conservation properties of unstructured staggered mesh schemes

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 159, 期 1, 页码 58-89

出版社

ACADEMIC PRESS INC
DOI: 10.1006/jcph.2000.6424

关键词

Navier-Stokes; staggered mesh; conservation; accuracy; unstructured

向作者/读者索取更多资源

Classic Cartesian staggered mesh schemes have a number of attractive properties. They do not display spurious pressure modes and they have been shown to locally conserve. mass, momentum. kinetic energy, and circulation to machine precision. Recently, a number of generalizations of the staggered mesh approach have been proposed for unstructured (triangular or tetrahedral) meshes. These unstructured staggered mesh methods have been created to retain the attractive pressure aspects and mass conservation properties of the classic Cartesian mesh method. This work addresses the momentum. kinetic energy, and circulation conservation properties of unstructured staggered mesh methods. It is shown that with certain choices of the velocity interpolation, unstructured staggered mesh discretizations of the divergence form of the Navier-Stokes equations can conserve kinetic energy and momentum both locally and globally. In addition, it is shown that unstructured staggered mesh discretizations of the rotational form of the Navier-Stokes equations can conserve kinetic energy and circulation both locally and globally. The analysis includes viscous terms and a generalization of the concept of conservation in the presence of viscosity to include a negative definite dissipation term in the kinetic energy equation. These novel conserving unstructured staggered mesh schemes have not been previously analyzed. It is shown that they are first-order accurate on nonuniform two-dimensional unstructured meshes and second-order accurate on uniform unstructured meshes. Numerical confirmation of the conservation properties and the order of accuracy of these unstructured staggered mesh methods is presented. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据