4.8 Article

The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes

期刊

BIOMATERIALS
卷 35, 期 9, 页码 2798-2808

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.12.052

关键词

Cardiac tissue engineering; Cardiomyocyte; Human embryonic stem cell; Scaffold; Transplantation; Uniaxial stretch

资金

  1. Canadian Institutes of Health Research [RMF111623, MOP119507]
  2. Canadian Institutes of Health Research Banting and Best Canada Doctoral Scholarship

向作者/读者索取更多资源

The goal of cardiac tissue engineering is to restore function to the damaged myocardium with regenerative constructs. Human embryonic stem cell derived cardiomyocytes (hESC-CMs) can produce viable, contractile, three-dimensional grafts that function in vivo. We sought to enhance the viability and functional maturation of cardiac tissue constructs by cyclical stretch. hESC-CMs seeded onto gelatin-based scaffolds underwent cyclical stretching. Histological analysis demonstrated a greater proportion of cardiac troponin T expressing cells in stretched than non-stretched constructs, and flow sorting demonstrated a higher proportion of cardiomyocytes. Ultrastructural assessment showed that cells in stretched constructs had a more mature phenotype, characterized by greater cell elongation, increased gap junction expression, and better contractile elements. Real-time PCR revealed enhanced mRNA expression of genes associated with cardiac maturation as well as genes encoding cardiac ion channels. Calcium imaging confirmed that stretched constructs contracted more frequently, with shorter calcium cycle duration. Epicardial implantation of constructs onto ischemic rat hearts demonstrated the feasibility of this platform, with enhanced survival and engraftment of transplanted cells in the stretched constructs. This uniaxial stretching system may serve as a platform for the production of cardiac tissue-engineered constructs for translational applications. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据