4.8 Article

Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film

期刊

BIOMATERIALS
卷 35, 期 27, 页码 7690-7698

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2014.05.069

关键词

Autolysis; Bioelectric effect; Biofilm; Direct current; Gentamicin; Staphylococcus aureus

资金

  1. National Medical Research Council of Singapore [NMRC EDG09nov024]

向作者/读者索取更多资源

Treatment of biofilm-related infections in orthopedics remains a serious clinical challenge. It is known that an electric current can significantly enhance the potency of some antibiotics against biofilms (bioelectric effect) but the uncertainty of the mechanisms and the electrolytic cell-like system used in previous studies limit its applications. Herein, the behavior of Staphylococcus aureus (S. aureus) on an electrically conductive polypyrrole/chitosan film upon passage of a direct current (DC) through the film was investigated in the absence and presence of gentamicin. The killing efficacy of the bacteria within the biofilm by gentamicin was greatly enhanced by the DC treatment. From an analysis of the gene expression by the biofilm bacteria after treatment with gentamicin, DC and their combination, it is postulated that the promotion of bacterial autolysis by DC treatment is responsible for the enhanced susceptibility of biofilm S. aureus to gentamicin. This postulate is supported by an increase in the amount of extracellular deoxyribonucleic acid and adenosine triphosphate, and the appearance of disrupted bacterial cells in the biofilm after DC treatment. These findings provide a new insight into the interaction between DC and bacteria, and offer potential benefits for the treatment of infections in orthopedics. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据