4.8 Article

The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration

期刊

BIOMATERIALS
卷 35, 期 5, 页码 1597-1607

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.11.020

关键词

Graphene; Cancer cell; Metastasis; Mitochondria; Electron transfer chain; Iron-sulfur center

资金

  1. National Basic Research Program of China [2012CB934003, 2010CB833701, 2010CB933401]
  2. National Natural Science Foundation of China [31070736, 31100595, 31300683]

向作者/读者索取更多资源

Graphene and its derivatives have become important nanomaterials worldwide and have potential medical applications including in vivo diagnosis, drug delivery, and photothermal therapy of cancer. However, little is known about their effect on the metastasis of cancer cells, which is the cause of over 90% of patient deaths. In the present investigation, we provide direct evidence that low concentrations of pristine graphene and graphene oxide show no apparent influence on the viability of MDA-MB-231 human breast cancer cells, PC3 human prostate cancer cells, as well as Bl6F10 mouse melanoma cells. However, both pristine graphene and graphene oxide can effectively inhibit the migration and invasion of these cancer cells. Further studies indicate that exposure of cells to graphene led to the direct inhibition of the electron transfer chain complexes I, II, III and IV, most likely by disrupting electron transfer between iron-sulfur centers, which is due to its stronger ability to accept electrons compared to ironsulfur clusters through theoretical calculations. The decreased electron transfer chain activity caused a reduction in the production of ATP and subsequent impairment of F-actin cytoskeleton assembly, which is crucial for the migration and invasion of metastatic cancer cells. The inhibition of cancer cell metastasis by graphene and graphene oxide might provide new insights into specific cancer treatment. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据