4.4 Article

Effects of mutations on the thermodynamics of a protein folding reaction: Implications for the mechanism of formation of the intermediate and transition states

期刊

BIOCHEMISTRY
卷 39, 期 12, 页码 3480-3485

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi9923510

关键词

-

向作者/读者索取更多资源

We have measured changes in heat capacity, entropy, and enthalpy for each step in the folding reaction of CD2.d1 and evaluated the effects of core mutations on these properties. All wild-type and mutant forms fold through a rapidly formed intermediate state that precedes the rate-limiting transition state. Mutations have a pronounced effect on the enthalpy of both the intermediate and folded states, but in all cases a compensatory change in entropy results in a small net free-energy change. While the enthalpy change in the folded state can be attributed to a loss of van der Waals interactions, it has already been shown that changes in the stability of the intermediate are dominated by changes in secondary structure propensity [Lorch et al. (1999) Biochemistry 38, 1377-1385]. It follows that the thermodynamic basis of beta-propensity is enthalpic in origin. The effects of mutations on the enthalpy and entropy of the transition state are smaller than on the ground states. This relative insensitivity to mutation is discussed in the light of theories concerning the nature of the rate-limiting barrier in folding reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据