4.6 Article

Identification of ice-nucleating active Pseudomonas fluorescens strains for biological control of overwintering Colorado potato beetles (Coleoptera: Chrysomelidae)

期刊

JOURNAL OF ECONOMIC ENTOMOLOGY
卷 93, 期 2, 页码 226-233

出版社

ENTOMOL SOC AMER
DOI: 10.1603/0022-0493-93.2.226

关键词

Leptinotarsa decemlineata; biological control; cold-hardiness; ice-nucleating active bacteria; overwintering insect pests

向作者/读者索取更多资源

Laboratory studies were conducted to identify ice-nucleating active bacterial strains able to elevate the supercooling point, the temperature at which freezing is initiated in body fluids, of Colorado potato beetles, Leptinotarsa decemlineata (Say), and to persist in their gut. Adult beetles fed ice-nucleating active strains of Pseudomonas fluorescens, p. putida, or p. syringae at 10(6) or 10(3) bacterial cells per beetle had significantly elevated supercooling points, from -4.5 to -5.7 degrees C and from -5.2 to -6.6 degrees C, respectively, immediately after ingestion. In contrast, mean supercooling point of untreated control beetles was -9.2 degrees C. When sampled at 2 and 12 wk after ingestion, only beetles fed P, fluorescens F26-4C and 88-335 still had significantly elevated supercooling points, indicating that these strains of bacteria were retained. Furthermore, beetle supercooling points were comparable to those observed immediately after ingestion, suggesting that beetle gut conditions were favorable not only for colonization but also for expression of ice-nucleating activity by these two strains. The results obtained from exposure to a single, low dose of either bacterial strain also show that a minimum amount of inoculum is sufficient for establishment of the bacterium in the gut. Persistence of these bacteria in Colorado potato beetles long after ingestion was also confirmed using a polymerase chain reaction technique that detected ice-nucleating active bacteria by virtue of their ina genes. Application of these ice-nucleating active bacteria to elevate the supercooling point of this freeze-intolerant insert pest could significantly reduce their winter survival, thereby reducing local populations and, consequently, crop damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据