4.4 Article

Designing safe job rotation schedules using optimization and heuristic search

期刊

ERGONOMICS
卷 43, 期 4, 页码 543-560

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/001401300184404

关键词

job rotation scheduling; integer programming; genetic algorithms

向作者/读者索取更多资源

Job rotation is one method that is sometimes used to reduce exposure to strenuous materials handling; however, developing effective rotation schedules can be complex in even moderate sized facilities. The purpose of this research is to develop methods of incorporating safety criteria into scheduling algorithms to produce job rotation schedules that reduce the potential for injury. Integer programming and a genetic algorithm were used to construct job rotation schedules. Schedules were comprised of lifting tasks whose potential for causing injury was assessed with the Job Severity Index. Each method was used to design four job rotation schedules that met specified safety criteria in a working environment where the object weight, horizontal distance and repetition rate varied over time. Each rotation was assigned to a specific gender/lifting capacity group. Five versions of the integer programming search method were applied to this problem. Each version generated one job rotation schedule. The genetic algorithm model was able to create a population of 437 feasible solutions to the rotation problem. Utilizing cluster analysis, a rule set was derived from the genetic algorithm generated solutions. These rules provided guidelines for designing safe job rotation schedules without the use of a computer. The advantages and limitations of these approaches in developing administrative controls for the prevention of back injury are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据