4.8 Article

Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies

期刊

BIOMATERIALS
卷 34, 期 24, 页码 5915-5925

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.04.033

关键词

Discarded kidneys; Renal transplantation; Organ bioengineering and regeneration; Scaffold; Decellularization; Biomaterial

资金

  1. Medical Research Council [991877] Funding Source: researchfish

向作者/读者索取更多资源

In the United States, more than 2600 kidneys are discarded annually, from the total number of kidneys procured for transplant. We hypothesized that this organ pool may be used as a platform for renal bioengineering and regeneration research. We previously showed that decellularization of porcine kidneys yields renal extracellular matrix (ECM) scaffolds that maintain their basic components, support cell growth and welfare in vitro and in vivo, and show an intact vasculature that, when such scaffolds are implanted in vivo, is able to sustain physiological blood pressure. The purpose of the current study was to test if the same strategy can be applied to discarded human kidneys in order to obtain human renal ECM scaffolds. The results show that the sodium dodecylsulfate-based decellularization protocol completely cleared the cellular compartment in these kidneys, while the innate ECM framework retained its architecture and biochemical properties. Samples of human renal ECM scaffolds stimulated angiogenesis in a chick chorioallantoic membrane assay. Importantly, the innate vascular network in the human renal ECM scaffolds retained its compliance. Collectively, these results indicate that discarded human kidneys are a suitable source of renal scaffolds and their use for tissue engineering applications may be more clinically applicable than kidneys derived from animals. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据