4.8 Article

Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics

期刊

BIOMATERIALS
卷 33, 期 19, 页码 4965-4973

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.03.044

关键词

Nanoparticles; Membrane; Molecular modeling; Endocytosis; Shape anisotropy; Rotation

资金

  1. National Natural Science Foundation of China [20736005, 20876004, 11104192]
  2. Chinese Ministry of Education [210208]

向作者/读者索取更多资源

In this work, an N-varied dissipative particle dynamics (DPD) simulation technique is applied to investigate detailed endocytosis kinetics for ligand-coated nanoparticles with different shapes, including sphere-, rod- and disk-shaped nanoparticles. Our results indicate that the rotation of nanoparticles, which is one of the most important mechanisms for endocytosis of shaped nanoparticle, regulates the competition between ligand-receptor binding and membrane deformation. Shape anisotropy of nanoparticles divides the whole internalization process into two stages: membrane invagination and nanoparticle wrapping. Due to the strong ligand-receptor binding energy, the membrane invagination stage is featured by the rotation of nanoparticles to maximize their contact area with the membrane. While the kinetics of the wrapping stage is mainly dominated by the part of nanoparticles with the largest local mean curvature, at which the membrane is most strongly bent. Therefore, nanoparticles with various shapes display different favorable orientations for the two stages, and one or two orientation rearrangement may be required during the endocytosis process. Our simulation results also demonstrate that the shape anisotropy of nanoparticles generates a heterogeneous membrane curvature distribution and might break the symmetry of the internalization pathway, and hence induce an asymmetric endocytosis. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据