4.8 Article

The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency

期刊

BIOMATERIALS
卷 33, 期 30, 页码 7631-7642

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.06.090

关键词

siRNA delivery; RNA interference; RAFT polymerization; Block copolymer

资金

  1. CSIRO Australia

向作者/读者索取更多资源

In this work a series of ABA tri-block copolymers was prepared from oligo(ethylene glycol) methyl ether methacrylate (OECMA(475)) and N,N-dimethylaminoethyl methacrylate (DMAEMA) to investigate the effect of polymer composition on cell, viability, siRNA uptake, serum stability and gene silencing. Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was used as the method of polymer synthesis as this technique allows the preparation of well-defined block copolymers with low polydispersity. Eight block copolymers were prepared by systematically varying the central cationic block (DMAEMA) length from 38 to 192 monomer units and the outer hydrophilic block (OEGMA(475)) from 7 to 69 units. The polymers were characterized using size exclusion chromatography and H-1 NMR. Chinese Hamster Ovary-GFP and Human Embryonic Kidney 293 cells were used to assay cell viability while the efficiency of block copolymers to complex with siRNA was evaluated by agarose gel electrophoresis. The ability of the polymer-siRNA complexes to enter into cells and to silence the targeted reporter gene enhanced green fluorescent protein (EGFP) was measured by using a CHO-CFP silencing assay. The length of the central cationic block appears to be the key structural parameter that has a significant effect on cell viability and gene silencing efficiency with block lengths of 110-120 monomer units being the optimum. The ABA block copolymer architecture is also critical with the outer hydrophilic blocks contributing to serum stability and overall efficiency of the polymer as a delivery system. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据