4.8 Article

Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system

期刊

BIOMATERIALS
卷 33, 期 1, 页码 283-294

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.09.052

关键词

Coprecipitation; Biomineralization; Biomimetic material; SBF (simulated body fluids); BMP; FGF

资金

  1. NIH [DE 015411, DE 13380]
  2. Tissue Engineering at Michigan [T32 DE007057]

向作者/读者索取更多资源

Delivering growth factors from bone-like mineral combines osteoinductivity with osteoconductivity. The effects of individual and sequential exposure of BMP-2 and FGF-2 on osteogenic differentiation, and their release from apatite were studied to design a dual delivery system. Bone marrow stromal cells were seeded on TCPS with the addition of FGF-2 (2.5, 10, 40 ng/ml) or BMP-2 (50, 150, 450 ng/ml) for 6 days. DNA content and osteogenic response were examined weekly for 3 weeks. FGF-2 increased DNA content; however, high concentrations of FGF-2 inhibited/delayed osteogenic differentiation, while a threshold concentration of BMP-2 was required for significant osteogenic enhancement. The sequence of delivery of BMP-2 (300 ng/ml) and FGF-2 (2.5 ng/ml) also had a significant impact on osteogenic differentiation. Delivery of FGF-2 followed by BMP-2 or delivery of BMP-2 followed by BMP-2 and FGF-2 enhanced osteogenic differentiation compared to the simultaneous delivery of both factors. Release of BMP-2 and FGF-2 from bone-like mineral was significantly affected by the concentration used during coprecipitation. BMP-2 also demonstrated a higher burst release compared to FGF-2. By integrating the results of the sequential delivery of BMP-2 and FGF-2 in solution, with the release of individual growth factors from mineral, an organic/inorganic delivery system based on coprecipitation can be designed for multiple biomolecules. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据