4.8 Article

End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration

期刊

BIOMATERIALS
卷 33, 期 35, 页码 9027-9036

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.09.008

关键词

End to side neurorrhaphy; Nerve repair; Nerve guidance channel; Tissue engineering

资金

  1. Department of Defense [Orthopaedic Trauma Research Program] [W81XWH-08-1-0333]

向作者/读者索取更多资源

In cases of complex neuromuscular defects, finding the proximal stump of a transected nerve in order to restore innervation to damaged muscle is often impossible. In this study we investigated whether a neighboring uninjured nerve could serve as a source of innervation of denervated damaged muscle through a biomaterial-based nerve conduit while preserving the uninjured nerve function. Tubular nerve conduits were fabricated by electrospinning a polymer blend consisting of poly(e-caprolactone) (PCL) and type I collagen. Using a rat model of common peroneal injury, the proximal end of the nerve conduit was connected to the side of the adjacent uninjured tibial branch (TB) of the sciatic nerve after partial axotomy, and the distal end of the conduit was connected to the distal stump of the common peroneal nerve (CPN). The axonal continuity recovered through the nerve conduit at 8 weeks after surgery. Recovery of denervated muscle function was achieved, and simultaneously, the donor muscle, which was innervated by the axotomized TB also recovered at 20 weeks after surgery. Therefore, this end-to-side neurorrhaphy (ETS) technique using the electrospun PCL/collagen conduit appears to be clinically feasible and would be a useful alternative in instances where autologous nerve grafts or an adequate proximal nerve stump is unavailable. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据