4.8 Article

Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering

期刊

BIOMATERIALS
卷 32, 期 6, 页码 1549-1559

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.10.038

关键词

Electrospinning; Mechanical properties; Muscle; Tendon; Strain profile; Composite tissue engineering

资金

  1. Department of Defense [USAMRAA ORTP07-07128091]

向作者/读者索取更多资源

Tissue engineering has had successes developing single tissue types, but there is a need for methods that will allow development of composite tissues. For instance, muscle tendon junctions (Mu) require a seamless interface to allow force transfer from muscle to tendon. One challenge in engineering MTJs is designing a continuous scaffold suitable for both tissue types. We aimed to create a dual scaffold that exhibits regional mechanical property differences that mimic the trends seen in native MTJ. Poly (epsilon-caprolactone)/collagen and poly(L-lactide)/collagen were co-electrospun onto opposite ends of a mandrel to create a scaffold with 3 regions. Scaffolds were characterized with scanning electron microscopy, tensile testing (uniaxial, cyclic, and video strain), for cytocompatibility using MTS, and seeded with C2C12 myoblasts and NIH3T3 fibroblasts. Native porcine diaphragm MTJs were also analyzed with video strain for comparison. Integrated scaffolds were created with fiber diameters from 452-549 nm. Scaffolds exhibited regional variations in mechanical properties with moduli from 4.490 -27.62 MPa and generally withstood cyclic testing, although with hysteresis. Video analysis showed scaffold strain profiles exhibited similar trends to native MTJ. The scaffolds were cytocompatible and accommodated cell attachment and myotube formation. The properties engineered into these scaffolds make them attractive candidates for tissue engineering of MTJs. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据