4.8 Article

High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation

期刊

BIOMATERIALS
卷 32, 期 6, 页码 1477-1483

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.10.033

关键词

Hydrogel; Microfluidics; Microencapsulation; Mechanical properties; Stem cell

资金

  1. NSERC Canada
  2. Canadian Institutes for Health Research (CHIR)

向作者/读者索取更多资源

Elasticity of cellular microenvironments strongly influences cell motility, phagocytosis, growth and differentiation. Currently, the relationship between the cell behaviour and matrix stiffness is being studied for cells seeded on planar substrates, however in three-dimensional (3D) microenvironments cells may experience mechanical signalling that is distinct from that on a two-dimensional matrix. We report a microfluidic approach for high-throughput generation of 3D microenvironments with different elasticity for studies of cell fate. The generation of agarose microgels with different elastic moduli was achieved by (i) introducing into a microfluidic droplet generator two streams of agarose solutions, one with a high concentration of agarose and the other one with a low concentration of agarose, at varying relative volumetric flow rate ratios of the two streams, and (ii) on-chip gelation of the precursor droplets. At 37 degrees C, the method enabled a similar to 35-fold variation of the shear elastic modulus of the agarose gels. The application of the method was demonstrated by encapsulating two mouse embryonic stem cell lines within the agarose microgels. This work establishes a foundation for the high-throughput generation of combinatorial microenvironments with different mechanical properties for cell studies. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据