4.8 Article

Three reversible and controllable discrete steps of channel gating of a viral DNA packaging motor

期刊

BIOMATERIALS
卷 32, 期 32, 页码 8234-8242

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.07.034

关键词

Nanotechnology; Bionanotechnology; DNA packaging; Viral motor; Nanopore; Single-molecule sensing

资金

  1. [GM059944]
  2. [EB012135]

向作者/读者索取更多资源

The channel of the viral DNA packaging motor allows dsDNA to enter the protein procapsid shell during maturation and to exit during infection. We recently showed that the bacteriophage phi29 DNA packaging motor exercises a one-way traffic property using a channel as a valve for dsDNA translocation. This raises a question of how dsDNA is ejected during infection if the channel only allows the dsDNA to travel inward. We proposed that DNA forward or reverse travel is controlled by conformational changes of the channel. Here we reported our direct observation that the channel indeed exercises conformational changes by single channel recording at a single-molecule level. The changes were induced by high electrical voltage, or by affinity binding to the C-terminal wider end located within the capsid. Novel enough, the conformational change of the purified connector channel exhibited three discrete gating steps, with a size reduction of 32% for each step. We investigated the role of the terminal and internal loop of the channel in gating by different mutants. The step-wise conformational change of the channel was also reversible and controllable, making it an ideal nano-valve for constructing a nanomachine with potential applications in nanobiotechnology and nanomedicine. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据