4.8 Article

The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods

期刊

BIOMATERIALS
卷 32, 期 34, 页码 9031-9039

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.08.032

关键词

Hydroxyapatite; Nanorod; Microwave; Drug delivery; Luminescence; Imaging

资金

  1. Science and Technology Commission of Shanghai [1052nm06200, 11ZR1441800]
  2. National Natural Science Foundation of China [51172260, 51102258, 50821004]
  3. Chinese Nano-973 Project [2010CB933901]
  4. Shanghai Jiao Tong University

向作者/读者索取更多资源

The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu3+/Gd3+ doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu3+ and Gd3+. The PL intensity of doped HAp nanorods can be adjusted by varying Eu3+ and Gd3+ concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd3+. The as-prepared Eu3+/Gd3+-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu3+/Gd3+-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu3+/Gd3+-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu3+/Gd3+-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu3+/Gd3+ dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据