4.8 Article

Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo

期刊

BIOMATERIALS
卷 32, 期 27, 页码 6425-6434

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.05.033

关键词

Mesenchymal stem cells; Growth factor delivery; Hyaluronic acid; Chondrogenesis; Hypertrophy; Hydrogel

资金

  1. National Institutes of Health [R01EB008722]

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair and members of the transforming growth factor-beta (TGF-beta) superfamily are a key mediator of MSC chondrogenesis. While TGF-beta mediated MSC chondrogenesis is well established in in vitro pellet or hydrogel cultures, clinical translation will require effective delivery of TGF-beta s in vivo. Here, we investigated the co-encapsulation of TGF-beta 3 containing alginate microspheres with human MSCs in hyaluronic acid (HA) hydrogels towards the development of implantable constructs for cartilage repair. TGF-beta 3 encapsulated in alginate microspheres with nanofilm coatings showed significantly reduced initial burst release compared to uncoated microspheres, with release times extending up to 6 days. HA hydrogel constructs seeded with MSCs and TGF-beta 3 containing microspheres developed comparable mechanical properties and cartilage matrix content compared to constructs supplemented with TGF-beta 3 continuously in culture media, whereas constructs with TGF-beta 3 directly encapsulated in the gels without microspheres had inferior properties. When implanted subcutaneously in nude mice, constructs containing TGF-beta 3 microspheres resulted in superior cartilage matrix formation when compared to groups without TGF-beta 3 or with TGF-beta 3 added directly to the gel. However, calcification was observed in implanted constructs after 8 weeks of subcutaneous implantation. To prevent this, the co-delivery of parathyroid hormone-related protein (PTHrP) with TGF-beta 3 in alginate microspheres was pursued, resulting in partially reduced calcification. This study demonstrates that the controlled local delivery of TGF-beta 3 is essential to neocartilage formation by MSCs and that further optimization is needed to avert the differentiation of chondrogenically induced MSCs towards a hypertrophic phenotype. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据