4.8 Article

Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation

期刊

BIOMATERIALS
卷 32, 期 13, 页码 3481-3486

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.12.059

关键词

Magnetism; Nanoparticle; Microencapsulation; MRI (magnetic resonance imaging); Drug delivery; Liver

资金

  1. Canadian Institutes for Health Research (CIHR)
  2. Canada Research Chair program
  3. Canada Foundation for Innovation (CFI)
  4. Natural Sciences and Engineering Research Council of Canada (NSERC)
  5. Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)
  6. Fonds de la recherche en sante du Quebec (FRSQ)

向作者/读者索取更多资源

Magnetic tumor targeting with external magnets is a promising method to increase the delivery of cytotoxic agents to tumor cells while reducing side effects. However, this approach suffers from intrinsic limitations, such as the inability to target areas within deep tissues, due mainly to a strong decrease of the magnetic field magnitude away from the magnets. Magnetic resonance navigation (MRN) involving the endovascular steering of therapeutic magnetic microcarriers (TMMC) represents a clinically viable alternative to reach deep tissues. MRN is achieved with an upgraded magnetic resonance imaging (MRI) scanner. In this proof-of-concept preclinical study, the preparation and steering of TMMC which were designed by taking into consideration the constraints of MRN and liver chemoembolization are reported. TMMC were biodegradable microparticles loaded with iron-cobalt nanoparticles and doxorubicin (DOX). These particles displayed high saturation magnetization (Ms = 72 emu g(-1)), MRI tracking compatibility (strong contrast on T2*-weighted images), appropriate size for the blood vessel embolization (similar to 50 mu m), and sustained release of DOX (over several days). The TMMC were successfully steered in vitro and in vivo in the rabbit model. In vivo targeting of the right or left liver lobes was achieved by MRN through the hepatic artery located 4 an beneath the skin. Parameters such as flow velocity, TMMC release site in the artery, magnetic gradient and TMMC properties, affected the steering efficiency. These data illustrate the potential of MRN to improve drug targeting in deep tissues. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据