4.0 Article

Silicon micromachining to tissue engineer branched vascular channels for liver fabrication

期刊

TISSUE ENGINEERING
卷 6, 期 2, 页码 105-117

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632700320739

关键词

-

向作者/读者索取更多资源

To date, many approaches to engineering new tissue have emerged and they have all relied on vascularization from the host to provide permanent engraftment and mass transfer of oxygen and nutrients. Although this approach has been useful in many tissues, it has not been as successful in thick, complex tissues, particularly those comprising the large vital organs such as the liver, kidney, and heart. In this study, we report preliminary results using micromachining technologies on silicon and Pyrex surfaces to generate complete vascular systems that may be integrated with engineered tissue before implantation. Using standard photolithography techniques, trench patterns reminiscent of branched architecture of vascular and capillary networks were etched onto silicon and Pyrex surfaces to serve as templates. Hepatocytes and endothelial cells were cultured and subsequently lifted as single-cell monolayers from these two-dimensional molds. Both cell types were viable and proliferative on these surfaces. In addition, hepatocytes maintained albumin production. The lifted monolayers were then folded into compact three-dimensional tissues. Thus, with the use microfabrication technology in tissue engineering, it now seems feasible to consider lifting endothelial cells as branched vascular networks from two-dimensional templates that mag ultimately be combined with layers of parenchymal tissue, such as hepatocytes, to form three-dimensional conformations of living vascularized tissue for implantation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据