4.8 Article

The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes

期刊

BIOMATERIALS
卷 32, 期 2, 页码 352-365

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.09.005

关键词

Hollow fibers; TPGS; Biocompatibility; Ultrafiltration coefficient; Solute rejection

资金

  1. Department of Science and Technology (DST) New Delhi India

向作者/读者索取更多资源

The extended interaction of blood with certain materials like hemodialysis membranes results in the activation of cellular element as well as inflammatory response This results in hypersensitive reactions and increased reactive oxygen species which occurs during or immediately after dialysis Although polysulfone (Psf) hollow fiber has been commercially used for acute and chronic hemodialysis its biocompatibility remains a major concern To overcome this we have successfully made composite Psf hollow fiber membrane consisting of hydrophilic/hydrophobic micro-domains of Psi and Vitamin E TPGS (TPGS) These were prepared by dry wet spinning using 5 10 15 20 wt% TPGS as an additive in dope solution TPGS was successfully entrapped in Psf hollow fiber as confirmed by ATR-FTIR and TGA The selective skin was formed at inner side of hollow fibers as confirmed by SEM study In vitro biocompatibility and performance of the Psf/TPGS composite membranes were examined with cytotoxicity ROS generation hemolysis platelet adhesion contact and complement activation protein adsorption ultrafiltration coefficient solute rejection and urea clearance We show that antioxidative composite Psi exhibits enhanced biocompatibility and the membranes show high flux and high urea clearance about two orders of magnitude better than commercial hemodialysis membranes on a unit area basis (C) 2010 Elsevier Ltd All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据