4.8 Article

An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices

期刊

BIOMATERIALS
卷 32, 期 22, 页码 4987-4993

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.03.057

关键词

Medical devices; Nitinol; Fatigue; Life prediction; Multiaxial loads

资金

  1. Nitinol Devices & Components, Inc. (Fremont, CA)
  2. Cordis Corporation
  3. Johnson & Johnson (Bridgewater, NJ)

向作者/读者索取更多资源

Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a near-equiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and thus fall short of accurately predicting the safe lifetime of stents under the complex multiaxial loading conditions experienced physiologically. While there is a considerable body of research documented on the cyclic fatigue of Nitinol in uniaxial tension or bending, there remains an almost total lack of comprehensive fatigue lifetime data for other loading conditions, such as torsion and tension/torsion. In this work, thin-walled Nitinol tubes were cycled in torsion at various mean and alternating strains to investigate the fatigue life behavior of Nitinol and results compared to equivalent fatigue data collected under uniaxial tensile/bending loads. Using these strain-life results for various loading modes and an equivalent referential (Lagrangian) strain approach, a strategy for normalizing these data is presented. Based on this strategy, a fatigue lifetime prediction model for the multiaxial loading of Nitinol is presented utilizing a modified Coffin-Manson approach where the number of cycles to failure is related to the equivalent alternating transformation strain. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据