4.8 Article

The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells

期刊

BIOMATERIALS
卷 31, 期 6, 页码 1114-1125

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.10.019

关键词

Heart valves; Tissue engineering; Mechanical stimulation; Mesenchymal stem cells; Organ level conditioning; Engineered tissue development

资金

  1. NIH [R01s HL-68816, HL-089750]
  2. American Heart Association Scientist Development [0830061N, 0635620T]

向作者/读者索取更多资源

We have previously shown that combined flexure and flow (CFF) augment engineered heart valve tissue formation using bone marrow-derived mesenchymal stem cells (MSC) seeded on polyglycolic acid (PGA)/poly-L-lactic acid (PLLA) blend nonwoven fibrous scaffolds (Engelmayr, et al., Biomaterials 2006; vol. 27 pp. 6083-95). In the present study, we sought to determine if these phenomena were reproducible at the organ level in a functional tri-leaflet valve. Tissue engineered valve constructs (TEVC) were fabricated using PGA/PLLA nonwoven fibrous scaffolds then seeded with MSCs. Tissue formation rates using both standard and augmented (using basic fibroblast growth factor [bFGF] and ascorbic acid-2-phosphate [AA2P]) media to enhance the overall production of collagen were evaluated, along with their relation to the local fluid flow fields. The resulting TEVCs were statically cultured for 3 weeks, followed by a 3 week dynamic culture period using our organ level bioreactor (Hildebrand et al., ABME, Vol. 32, pp. 1039-49, 2004) under approximated pulmonary artery conditions. Results indicated that supplemented media accelerated collagen formation (similar to 185% increase in collagen mass/MSC compared to standard media), as well as increasing collagen mass production from 3.90 to 4.43 pg/cell/week from 3 to 6 weeks. Using augmented media, dynamic conditioning increased collagen mass production rate from 7.23 to 13.65 pg/cell/week (88.8%) during the dynamic culture period, along with greater preservation of net DNA. Moreover, when compared to our previous CFF study, organ level conditioning increased the collagen production rate from 4.76 to 6.42 pg/cell/week (35%). Newly conducted CFD studies of the CFF specimen flow patterns suggested that oscillatory surface shear stresses were surprisingly similar to a tri-leaflet valve. Overall, we found that the use of simulated pulmonary artery conditions resulted in substantially larger collagen mass production levels and rates found in our earlier CFF study. Moreover, given the fact that the scaffolds underwent modest strains (similar to 7% max) during either CFF or physiological conditioning, the oscillatory surface shear stresses estimated in both studies may play a substantial role in eliciting MSC collagen production in the highly dynamic engineered heart valve fluid mechanical environment. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据