4.8 Article

Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture

期刊

BIOMATERIALS
卷 31, 期 20, 页码 5408-5417

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.03.041

关键词

Porosity; Silicon; Cell culture; Nanoporous; Cell adhesion; Biocompatibility

资金

  1. NYSTAR Center for Emerging and Innovative Sciences (CEIS)
  2. SiMPore Inc.

向作者/读者索取更多资源

Porous nanocrystalline silicon (pnc-Si) is new type of silicon nanomaterial with potential uses in lab-on-a-chip devices, cell culture, and tissue engineering. The pnc-Si material is a 15 nm thick, freestanding, nanoporous membrane made with scalable silicon manufacturing. Because pnc-Si membranes are approximately 1000 times thinner than any polymeric membrane, their permeability to small solutes is orders-of-magnitude greater than conventional membranes. As cell culture substrates, pnc-Si membranes can overcome the shortcomings of membranes used in commercial transwell devices and enable new devices for the control of cellular microenvironments. The current study investigates the feasibility of pnc-Si as a cell culture substrate by measuring cell adhesion, morphology, growth and viability on pnc-Si compared to conventional culture substrates. Results for immortalized fibroblasts and primary vascular endothelial cells are highly similar on pnc-Si, polystyrene and glass. Significantly, pnc-Si dissolves in cell culture media over several days without cytotoxic effects and stability is tunable by modifying the density of a superficial oxide. The results establish pnc-Si as a viable substrate for cell culture and a degradable biomaterial. Pnc-Si membranes should find use in the study of molecular transport through cell monolayers, in studies of cell-cell communication, and as biodegradable scaffolds for three-dimensional tissue constructs. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据