4.6 Review

Biology of nitric oxide signaling

期刊

CRITICAL CARE MEDICINE
卷 28, 期 4, 页码 N37-N52

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00003246-200004001-00005

关键词

cell signaling; cytotoxicity; dinitrogen trioxide; nitric oxide; nitration; nitrosation; nitrosothiols; oxidation; peroxynitrite; superoxide radical

资金

  1. NIGMS NIH HHS [R01GM60915] Funding Source: Medline

向作者/读者索取更多资源

The free radical nitric oxide (NO) has emerged in recent years as a fundamental signaling molecule for the maintenance of homeostasis, as well as a potent cytotoxic effector involved in the pathogenesis of a wide range of human diseases. Although this paradoxical fate has generated confusion, separating the biological actions of NO on the basis of its physiologic chemistry provides a conceptual framework which helps to distinguish between the beneficial and toxic consequences of NO, and to envision potential therapeutic strategies for the future. Under normal conditions, NO produced in low concentration acts as a messenger and cytoprotective (antioxidant) factor, via direct interactions with transition metals and other free radicals. Alternatively, when the circumstances allow the (formation of substantial amounts of NO and modify the cellular microenvironment formation of the superoxide radical), the chemistry of NO will turn into indirect effects consecutive to the formation of dinitrogen trioxide and peroxynitrite. These reactive nitrogen species will, in turn, mediate both oxidative and nitrosative stresses, which form the basis of the cytotoxicity generally attributed to NO, relevant to the pathophysiology of inflammation, circulatory shock, and ischemia-reperfusion injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据