4.7 Article

Mechanisms for slow strengthening in granular materials

期刊

PHYSICAL REVIEW E
卷 61, 期 4, 页码 4060-4068

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.61.4060

关键词

-

向作者/读者索取更多资源

Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F(max) experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time tau. The layer strength increases roughly logarithmically with tau only if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements, and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by a cycling of the applied sheer stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据