4.8 Article

Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting

期刊

BIOMATERIALS
卷 31, 期 19, 页码 5266-5274

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.03.006

关键词

Self-assembly; Mesenchymal stem cell; Inflammation

资金

  1. American Heart Association [0970178N]
  2. NIH [DE019191]
  3. Kauffman Foundation
  4. Human Frontier Science Program (HFSP)

向作者/读者索取更多资源

Cell therapy has the potential to impact the quality of life of suffering patients. Systemic infusion is a convenient method of cell delivery; however, the efficiency of engraftment presents a major challenge. It has been shown that modification of the cell surface with adhesion ligands is a viable approach to improve cell homing, yet current methods including genetic modification suffer potential safety concerns, are practically complex and are unable to accommodate a wide variety of homing ligands or are not amendable to multiple cell types. We report herein a facile and generic approach to transiently engineer the cell surface using lipid vesicles to present biomolecular ligands that promote cell rolling, one of the first steps in the homing process. Specifically, we demonstrated that lipid vesicles rapidly fuse with the cell membrane to introduce biotin moieties on the cell surface that can subsequently conjugate streptavidin and potentially any biotinylated homing ligand. Given that cell rolling is a pre-requisite to firm adhesion for systemic cell homing, we examined the potential of immobilizing sialyl Lewis X (SLeX) on mesenchymal stem cells (MSCs) to induce cell rolling on a P-selectin surface, under dynamic flow conditions. MSCs modified with SLeX exhibit significantly improved rolling interactions with a velocity of 8 mu m/s as compared to 61 mu m/s for unmodified MSCs at a shear stress of 0.5 dyn/cm(2). The cell surface modification does not impact the phenotype of the MSCs including their viability and multi-lineage differentiation potential. These results show that the transitory modification of cell surfaces with lipid vesicles can be used to efficiently immobilize adhesion ligands and potentially target systemically administered cells to the site of inflammation. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据