4.7 Review

Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms

期刊

AQUATIC TOXICOLOGY
卷 48, 期 4, 页码 357-389

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0166-445X(00)00088-6

关键词

multidrug resistance; multixenobiotic resistance; P-glycoprotein; marine; aquatic; fish

向作者/读者索取更多资源

Multixenobiotic resistance in aquatic organisms exposed to natural toxins or anthropogenic contaminants is a phenomenon analogous to multidrug resistance in mammalian tumor cell lines tolerant of anti-cancer drugs. Multidrug resistance is commonly due to the elevated expression of transmembrane P-glycoproteins (P-gp) which actively transport a wide variety of structurally and functionally diverse compounds. The purpose of this review is to place aquatic ecotoxicological data in context of the larger multidrug resistance field of study. Information on P-glycoproteins structure, mechanism of transport, and substrate specificity gained through traditional mammalian and cell culture models is examined in conjunction with recent work on aquatic species exposed to xenobiotics both in the field and in the laboratory. The physiological function of P-glycoproteins is explored through studies of gene knockout models and expression patterns in normal tissues and tumors. The effect of xenobiotic exposures on P-gp activity and protein titer is examined in wild and captive populations of aquatic invertebrates and vertebrates. Substrate overlap and evidence of co-expression of phase I detoxification enzymes (e.g. cytochromes P450) and P-gp are presented. The role of P-gp chemosensitizers as environmental pollutants and the ecotoxicological consequences of P-gp inhibition are highlighted. The overwhelming evidence suggests that P-glycoproteins provide aquatic organisms with resistance to a wide range of natural and anthropogenic toxins. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据