4.8 Article

Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages

期刊

BIOMATERIALS
卷 31, 期 7, 页码 1486-1492

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.11.025

关键词

Zwitterionic; Catechol; Nonfouling; Functionalization

资金

  1. National Cancer Institute via SAIC-Frederick [28XS119]
  2. Office of Naval Research [N000140711036]
  3. Boeing-Roundhill Professorship
  4. China Scholarship Council

向作者/读者索取更多资源

In this work, a biomimetic polymer (pCB(2)-catechol(2)), with two zwitterionic poly(carboxybetaine) (pCB) arms for ultra-low fouling and two adhesive catechol groups for surface anchoring, was developed. Two pCB arms were grown from an initiator with two catechol groups via atom transfer radical polymerization (ATRP). Binding tests of pCB(2)-catechol(2) were performed on a gold surface under a range of conditions such as pH values and solvents. Protein adsorption from single protein solutions of fibrinogen and lysozyme, and complex media of 100% blood plasma and serum was evaluated using a surface plasmon resonance (SPR) sensor. Results are compared with those from two other polymers (i.e., one polymer with one pCB chain and one catechol group, termed as pCB-catechol, and another polymer with one pCB chain and two catechol groups, termed as pCB-catechol(2)). Furthermore, the direct immobilization of anti-activated leukocyte cell adhesion molecule (anti-ALCAM) was carried out on the pCB(2)-catechol(2) modified surface. Results showed that the antibody-immobilized surface maintained its excellent ultra-low fouling properties. The detection of activated leukocyte cell adhesion molecule (ALCAM) in 100% blood plasma with high sensitivity and specificity was achieved. This work demonstrates an effective and convenient strategy to obtain functionalizable and ultra-low fouling surfaces. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据