4.8 Article

Local delivery of a collagen-binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering

期刊

BIOMATERIALS
卷 31, 期 5, 页码 878-885

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.10.007

关键词

Controlled drug release; Growth factors; Cell proliferation; Collagen; Smooth muscle cell

资金

  1. NIH [R01-HL41272]
  2. Department of Veteran's Affairs (HPG)

向作者/读者索取更多资源

We investigated the delivery of R136K-CBD (a collagen-binding mutant chimera of fibroblast growth factor-1) with a type I collagen scaffold as the delivery vehicle to smooth muscle cells (SMCs) for vascular tissue engineering. The binding affinity of R136K-CBD to 3-D collagen scaffolds was investigated both in the presence and absence of cells and/or salts. 2-D and 3-D visualization of delivery of R136K-CBD into SMCs were accomplished by combined fluorescent and reflection confocal microscopy. The mitogenic effect of collagen-immobilized R136K-CBD on SMCs in 3-D collagen was studied by Cyquant assay at different time intervals. In the group devoid of salt and cells, no detectable release of R136K-CBD into overlying culture media was found, compared with burst-and-continuous release of R136K and FGF-1 over a 14-day period in all other groups. The release rate of R136K-CBD was 1.7 and 1.6-fold less than R-136K and FGF-1 when media was supplemented with 2 M salt (P < 0.0001), and 2.6 and 2.5-fold less in cell-populated collagen hydrogels (P < 0.0001), respectively. R136K-CBD showed essentially uniform binding to collagen and its distribution was dependent on that of the collagen scaffold. Internalization of R136K-CBD into SMCs was documented by confocal microscopy. 3-D local delivery of collagen-immobilized R136K-CBD increased the proliferation of SMCs in the collagen matrix to significantly greater levels and for a significantly greater duration than R136K or FGF-1, with 2.0 and 2.1-fold more mitogenicity than R136K and FGF-1 respectively (P < 0.0001) at day 7. The results suggest that our collagen-binding fusion protein is an effective strategy for growth factor delivery for vascular tissue engineering. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据