4.8 Article

Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering

期刊

BIOMATERIALS
卷 31, 期 25, 页码 6454-6467

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.05.008

关键词

Polyethylene oxide; Scaffold; In vitro test; In vivo test; Hydrogel; Cell viability

资金

  1. Australian Research Council [LE0882576]

向作者/读者索取更多资源

Highly porous and biodegradable hydrogels based on poly(ethylene glycol) (PEG) and cystamine (Cys) were fabricated using epoxy-amine chemistry and investigated as scaffolds for soft-tissue engineering. Whereas the application of fused-salt templates provided a comprehensive interconnecting pore morphology, the incorporation of a specially designed poly(E-caprolactone) (PCL) cross-linker provided enhanced mechanical function without adversely effecting the scaffolds positive biological interactions. The addition of only 1.2 wt% of the PCL cross-linker was sufficient to provide improvements in the ultimate stress of 30-40%. In vitro studies not only confirmed the non-cytotoxic nature of the scaffolds, but also their degradation products, which were isolated and characterised by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionisation time-of-flight mass spectroscopy (MALDI ToF MS). In vivo trials were conducted over a period of 8 weeks through implantation of the scaffolds into the dorsal region of rats. At both 2 and 8 week time points the explants revealed complete infiltration by the surrounding tissue and the development of a vascular network to support the newly generated tissue, without an excessive foreign-body response. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据