3.8 Article

A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures

期刊

PHYSICA D
卷 138, 期 1-2, 页码 114-133

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0167-2789(99)00184-0

关键词

multi-phase field model; microstructure simulations; eutectic alloys; peritectic alloys

向作者/读者索取更多资源

In this paper, we extend the multi-phase-field concept, recently developed to model pure systems involving grains, to multi-phase alloy systems. We derive a phase-field model in a general form which has the flexibility to model a variety of binary alloys. In particular, our new model provides a framework for describing and numerically simulating the solidification of both eutectic and peritectic systems. We report computations that exhibit a wide range of realistic phenomena, including eutectic lamellae spacing selection by the annihilation of lamellae through competitive over-growth by their neighbours as well as tip splitting of individual lamellae. Our results are consistent with the scaling predictions of the classical Jackson and Hunt theory of eutectic lamellae. With regards to peritectic growth, we report simulations that exhibit many characteristic features of the peritectic phase transition: below the peritectic temperature the peritectic phase grows preferentially along the properitectic phase by solute diffusion in the liquid until the parent phase is engulfed. The subsequent peritectic transformation continues by solid diffusion on a longer timescale. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据