4.8 Article

Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model

期刊

BIOMATERIALS
卷 30, 期 29, 页码 5319-5329

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.06.021

关键词

Bone-titanium integration; Osseointegration; Total hip replacement; Dental implant; Nanotechnology; Self-assembly

资金

  1. National Center for Research Resources, National Institute of Health [C06RR014529]

向作者/读者索取更多资源

Biological tissues involve hierarchical organizations of structures and components. We created a micropit-and-nanonodule hybrid topography of TiO2 by applying a recently reported nanonodular self-assembly technique on acid-etch-created micropit titanium surfaces. The size of the nanonodules was controllable by changing the assembly time. The created micro-nano-hybrid surface rendered a greater surface area and roughness, and extensive geographical undercut on the existing micropit surface and resembled the surface morphology of biomineralized matrices. Rat bone marrow-derived osteoblasts were cultured on titanium disks with either micropits alone, micropits with 100-nm nodules, micropits with 300-nm nodules, or micropits with 500-nm nodules. The addition of nanonodules to micropits selectively promoted osteoblast but not fibroblast function. Unlike the reported advantages of microfeatures that promote osteoblast differentiation but inhibit its proliferation, micro-nano-hybrid topography substantially enhanced both. We also demonstrated that these biological effects were most pronounced when the nanonodules were tailored to a diameter of 300 nm within the micropits. An implant biomechanical test in a rat femur model revealed that the strength of bone-titanium integration was more than three times greater for the implants with micropits and 300-nm nanonodules than the implants with micropits alone. These results suggest the establishment of functionalized nano-in-microtitanium surfaces for improved osteoconductivity, and may provide a biomimetic micro-to-nanoscale hierarchical model to study the nanofeatures of biomaterials. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据