4.8 Article

Poly(ω-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery

期刊

BIOMATERIALS
卷 30, 期 29, 页码 5707-5719

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.06.061

关键词

Camptothecin; Polymer nanoparticle; Hydrophobic; Controlled release; Antitumor effect

资金

  1. National Institutes of Health [EB000487]
  2. China Scholarship Council (CSC)

向作者/读者索取更多资源

In this study, we show that degradable particles of a hydrophobic polymer can effectively deliver drugs to tumors after i.v. administration. Free-standing nanoparticles with diameters of 100-300 nm were successfully fabricated from highly hydrophobic, biodegradable poly(omega-pentadecalactone-co-butyleneco-succinate) (PPBS) copolyesters. PPBS copolymers with various compositions (20-80 mol% PDL unit contents) were synthesized via copolymerization of omega-pentadecalactone (PDL), diethyl succinate (DES), and 1,4-butanediol (BD) using Candida antarctica lipase B (CALB) as the catalyst. Camptothecin (CPT, 12-22%) was loaded into PPBS nanoparticles with high encapsulation efficiency (up to 96%) using a modified oil-in-water single emulsion technique. The CPT-loaded nanoparticles had a zeta potential of about -10 mV. PPBS particles were non-toxic in cell culture. Upon encapsulation, the active lactone form of CPT was remarkably stabilized and no lactone-to-carboxylate structural conversion was observed for CPT-loaded PPBS nanoparticles incubated in both phosphate-buffered saline (PBS, pH = 7.4) and DMEM medium for at least 24 h. In PBS at 37 degrees C, CPT-loaded PPBS nanoparticles showed a low burst CPT release (20-30%) within the first 24 h followed by a sustained, essentially complete, release of the remaining drug over the subsequent 40 days. Compared to free CPT, CPT-loaded PPBS nanoparticles showed a significant enhancement of cellular uptake, higher cytotoxicity against Lewis lung carcinoma and 9L cell lines in vitro, a longer circulation time, and substantially better antitumor efficacy in vivo. These results demonstrate the potential of PPBS nanoparticles as long-term stable and effective drug delivery systems in cancer therapy. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据