4.4 Article Proceedings Paper

Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model

期刊

PURE AND APPLIED GEOPHYSICS
卷 157, 期 4, 页码 603-619

出版社

BIRKHAUSER VERLAG AG
DOI: 10.1007/PL00001110

关键词

permeability; sandstone; fractals; diagenesis

向作者/读者索取更多资源

Permeability is one of the key rock properties for the management of hydrocarbon and geothermal reservoirs as well as for aquifers. The fundamental equation for estimating permeability is the Kozeny-Carman equation. It is based on a capillary bundle model and relates permeability to porosity, tortuosity and an effective hydraulic pore radius which is defined by this equation. Whereas in clean sands the effective pore radius can be replaced by the specific surface or by the grain radius in a simple way, the resulting equations for permeability cannot be applied to consolidated rocks. Based on a fractal model for porous media, equations were therefore developed which adjust the measure of the specific surface and of the grain radius to the resolution length appropriate for the hydraulic process. These equations are calibrated by a large data set for permeability, formation factor, and porosity determined on sedimentary rocks. This fractal model yields tortuosity and effective pore radius as functions of porosity as well as a general permeability-porosity relationship, the coefficients of which are characteristic for different rock types. It can be applied to interpret the diagenetic evolution of the pore space of sedimentary rocks due to mechanical and chemical compaction with respect to porosity and permeability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据