4.8 Article

Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation

期刊

BIOMATERIALS
卷 30, 期 4, 页码 548-555

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.09.062

关键词

Calcium phosphate coating; Cobalt alloy; Hypoxia; Joint replacement; Osteoclast; Osteolysis

向作者/读者索取更多资源

Metal ions Originating from mechanical debris and Corrosive wear of prosthetic implant alloys accumulate in peri-implant soft tissues, bone mineral, and body fluids. Eventually, metal ions such as cobalt (II) (Co2+) which is a major component of cobalt-chromium-based implant alloys and a known activator of osteolysis, are incorporated into the mineral phase of bone. We hypothesize that the accumulation of CO2+ in the mineral could directly activate osteolysis by targeting osteoclasts. To test this hypothesis, we coated tissue culture plastic with a thin layer of calcium phosphate (CaP) containing added traces Co2+ thereby mimicking the bone mineral accumulation of Co2+. Murine bone marrow osteoclasts formed in the presence of M-CSF and RANKL were cultured on these surfaces to examine the effects of Co2+ on osteoclast formation and resorptive activity. Treatment conditions with Co2+ involved incorporation into the Cap layer, adsorption to the mineral Surface, or addition to Culture media. Micromolar concentrations of Co2+ delivered to developing osteoclast Precursors by all 3 routes increased both osteoclast differentiation and resorptive function. Compared to CaP layers without Co2+, we observed a maximal 75% increase in osteoclast numbers and a 2.3- to 2.7-fold increase in mineral resorption from the tissue culture wells containing 0.1 mu m Co2+ and 0.1 - 10 mu m Co2+, respectively. These concentrations are well within the range found in peri-implant tissues in vivo. This direct effect of Co2+ on osteoclasts appears to act independently of the particulate phagocytosis/inflammation-mdiated pathways, thus enhancing osteolysis and aseptic implant loosening. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据