4.8 Article

Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning

期刊

BIOMATERIALS
卷 30, 期 7, 页码 1413-1420

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.11.013

关键词

Cell micropatterning; Photochemical reaction; MPC polymer; Non-specific protein adsorption; Long term stability

向作者/读者索取更多资源

This report describes a new surface-treatment technique for cell micropatterning. Cell attachment was selectively controlled on the glass surface using a photochemical reaction. This strategy is based on combining 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, which is known to reduce nonspecific adsorption, and a photolabile linker (PI.) for selective cell patterning. The MPC polymer was coated directly on the glass surface using a straightforward surface modification method, and was removed by ultraviolet (UV) light illumination. All the surface mollification steps were evaluated using static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), measurements of non-specific protein adsorption, and the cell attachment test. After selective cleavage of the MPC polymer through the photomask, cells attached only to the UV-illuminated region where the MPC polymer was removed, which made the hydrophilic surface relatively hydrophobic. Furthermore, the size of the MC-3T3 E1 cell patterns could be controlled by single cell level. Stability of the cell micropatterns was demonstrated by culturing MC-3T3 E1 cell patterns for 5 weeks on glass slide. The micropatterns were stable during culturing; cell viability also was verified. This method can be a powerful tool for cell patterning research. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据