4.8 Article

Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy

期刊

BIOMATERIALS
卷 29, 期 12, 页码 1920-1930

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.12.038

关键词

glycol chitosan nanoparticles; drug delivery system; antiangiogenic peptide drugs; cancer therapy

资金

  1. Korea Health Promotion Institute [A062254] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  2. Ministry of Education, Science & Technology (MoST), Republic of Korea [2E20610] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. National Research Foundation of Korea [과06A1504] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Antiangiogenic peptide drugs have received much attention in the fields of tumor therapy and tumor imaging because they show promise in the targeting of integrins such as alpha(v)beta(3) on angiogenic endothelial cells. However, systemic antiangiogenic peptide drugs have short half-lives in vivo, resulting in fast serum clearance via the kidney, and thus the therapeutic effects of such drugs remain modest. In this study, we prepared self-assembled glycol chitosan nanoparticles and explored whether this construct might function as a prolonged and sustained drug delivery system for RGD peptide, used as an antiangiogenic model drug in cancer therapy. Glycol chitosan hydrophobically modified with 5 beta-cholanic acid (HGC) formed nanoparticles with a diameter of 230 nm, and RGD peptide was easily encapsulated into HGC nanoparticles (yielding RGD-HGC nanoparticles) with a high loading efficiency (>85%). In vitro work demonstrated that RGD-HGC showed prolonged and sustained release of RGD, lasting for 1 week. RGD-HGC also inhibited HUVEC adhesion to a beta ig-h3 protein-coated surface, indicating an antiangiogenic effect of the RGD peptide in the HGC nanoparticles. In an in vivo study, the antiangiogenic peptide drug formulation of RGD-HGC markedly inhibited bFGF-induced angiogenesis and decreased hemoglobin content in Matrigel plugs. Intratumoral administration of RGD-HGC significantly decreased tumor growth and microvessel density compared to native RGD peptide injected either intravenously or intratumorally, because the RGD-HGC formulation strongly enhanced the antiangiogenic and antitumoral efficacy of RGD peptide by affording prolonged and sustained RGD peptide delivery locally and regionally in solid tumors. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据