4.8 Article

The structure and functionality of contractile forisome protein aggregates

期刊

BIOMATERIALS
卷 29, 期 2, 页码 247-256

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.09.020

关键词

mechanoproteins; AFM; forisomes; energy conversion; calcium-dependent proteins

向作者/读者索取更多资源

Although they have been discovered decades ago, only in the last years forisome protein aggregates received broader attention due to their ability to convert chemical into mechanical energy. In contrast to most other motor proteins, these proteins from Fabaceae plants are independent of high-energy chemical compounds, like e.g. ATP, but undergo an anisotropic shape transition (longitudinally expanded to contracted) in response to ion concentration changes (Ca2+, H+, etc.), instead. We present morphological and functional data on forisomes obtained using atomic force microscopy (AFM). High-aspect ratio AFM tips allow the detailed elucidation of structural characteristics that are inaccessible with standard AFM tips. Microindentation measurements were employed to calculate the elasticity of the forisome material. Young's moduli were found to be similar to 32.7 kPa in the expanded state and similar to 2.748 kPa in the contracted state of the polymer. These results are compared to investigations where a tipless AFM cantilever was utilized to exert a load against the shape transition. In the latter experiments, an energy conversion of similar to 2.29 pJ per stroke was detected. Energetical considerations support the hypothesis that the switching process is accompanied by a change in cross-linking of the constituent subunits and allow estimating the extent of cooperativity during the pH-induced transition. Finally, useful parameters were identified and characterized that are crucial for the application of forisomes as functional elements in microfluidic chips. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据