4.6 Article

Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 45, 期 4, 页码 983-995

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/45/4/313

关键词

-

资金

  1. NCI NIH HHS [CA 74158-02] Funding Source: Medline

向作者/读者索取更多资源

Current clinical experience in radiation therapy is based upon dose computations that report the absorbed dose to water, even though the patient is not made of water but of many different types of tissue. While Monte Carlo dose calculation algorithms have the potential for higher dose accuracy, they usually transport particles in and compute the absorbed dose to the patient media such as soft tissue, lung or bone. Therefore, for dose calculation algorithm comparisons, or to report dose to water or tissue contained within a bone matrix for example, a method to convert dose to the medium to dose to water is required. This conversion has been developed here by applying Bragg-Gray cavity theory. The dose ratio for 6 and 18 MV photon beams was determined by computing the average stopping power ratio for the primary electron spectrum in the transport media. For soft tissue, the difference between dose to medium and dose to water is approximately 1.0%, while For cortical bone the dose difference exceeds 10%. The variation in the dose ratio as a function of depth and position in the field indicates that for photon beams a single correction factor can be used for each particular material throughout the held for a given photon beam energy. The only exception to this would be for the clinically non-relevant dose to air. Pre-computed energy spectra for Co-60 to 24 MV are used to compute the dose ratios for these photon beams and to determine an effective energy for evaluation of the dose ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据