4.7 Article

Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture

期刊

BIOMASS & BIOENERGY
卷 49, 期 -, 页码 239-248

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2012.12.036

关键词

Anaerobic digestion; Digestate processing; Cradle-to-cradle nutrient recycling; Green fertilizers; Sustainable agriculture; Environmental economics

资金

  1. Agency for Innovation by Science and Technology [90831]
  2. European Commission

向作者/读者索取更多资源

In the transition from a fossil to a bio-based economy, it has become an important challenge to maximally recuperate valuable nutrients coming from waste streams. Nutrient resources are rapidly depleting, significant amounts of fossil energy are used for the production of chemical fertilizers, whereas costs for energy and fertilizers are increasing. In the meantime, biogas production through anaerobic digestion produces nutrient-rich digestates. In high-nutrient regions, these products cannot or only sparingly be returned to agricultural land in its crude unprocessed form. The consequent processing of this digestate requires a variety of technologies producing lots of different derivatives, which could potentially be re-used as green fertilizers in agriculture. As such, a sustainable alternative for fossil-based mineral fertilizers could be provided. This study aims to characterize the physico-chemical properties of digestates and derivatives, in order to identify the fertilizer value and potential bottlenecks for agricultural re-use of these products, in line with European legislative constraints. In addition, the economic and ecological benefits of substituting conventional fertilizers by bio-based alternatives are quantified and evaluated. Waste water from acidic air scrubbers for ammonia removal shows potential for application as N-S fertilizer. Analogously, concentrates resulting from membrane filtrated liquid fraction of digestate show promise as N-K fertilizer. Substituting conventional fertilizers by digestate derivatives in different cultivation scenarios can result in significant economic and ecological benefits for the agriculturist. Starting from theoretical scenarios outlined in the current study, field test validation will be required to confirm the potential substitution of fossil-based mineral fertilizers by bio-based alternatives. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据