4.2 Article

Retinal ganglion cell topography in elasmobranchs

期刊

BRAIN BEHAVIOR AND EVOLUTION
卷 55, 期 4, 页码 191-208

出版社

KARGER
DOI: 10.1159/000006652

关键词

elasmobranchs; retina; retinal ganglion cell; topography; depth distribution; feeding habits

向作者/读者索取更多资源

Retinal wholemounts are used to examine the topographic distribution of retinal cells within the ganglion cell layer in a range of elasmobranchs from different depths, The retina is examined for regional specializations for acute vision in six species of selachians, Galeocerdo cuvieri, Hemiscyllium ocellatum, Scyliorhinus canicula, Galeus melastomus, Etmopterus spinax, Isistius brasiliensis, one species of batoid, Raja bigelowi and one species of chimaera, Hydrolagus mirabilis. These species represent a range of lifestyles including pelagic, mesopelagic and benthic habitats, living from shallow water to the sea bottom at a depth of more than 3000 m. The topography of cells within the ganglion cell layer is non-uniform and changes markedly across the retina. Most species possess an increased density of cells across the horizontal (dorsal) meridian or visual streak, with a density range of 500 to 2,500 cells per mm(2) with one or more regional increases in density lying within this specialized horizontal area. It is proposed that the higher spatial resolving power provided by the horizontal streak in these species mediates panoramic vision in the lower frontal visual field, Only I. brasiliensis possesses a concentric arrangement of retinal iso-density contours in temporal retina or an area centralis, thereby increasing spatial resolving power in a more specialized part of the visual field, an adaptation for its unusual feeding behavior. In Nissl-stained material, amacrine and ganglion cell populations could be distinguished on the criteria of soma size, soma shape and nuclear staining. Quantitative analyses show that the proportion of amacrine cells lying within the ganglion cell layer is nonuniform and ranges between 0.4 and 12.3% in specialized retinal areas and between 8.2 and 48.1% in the peripheral non-specialized regions. Analyses of soma area of the total population of cells in the ganglion cell layer also show that the pelagic species possess significantly smaller soma (9-186 mu m(2)) than benthic and/or deep-sea species (16-338 mu m(2)), and that a number of different morphological classes of cells are present including a small population of giant ganglion cells. Copyright (C) 2000 S. Karger AG. Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据